Table 9. Hierarchical logistic regression analyses: Predicting pass rates for screen, basic and advanced courses based on K-PAT total score & PARE score
과정 | 요인 | 1단계 | 2단계 |
B | SE | Wald | p | df | OR | B | SE | Wald | p | df | OR |
입문 | PARE | 0.09*** | .014 | 44.48 | <.001 | 1 | 1.095 | 0.08*** | .014 | 32.22 | <.001 | 1 | 1.083 |
K-PAT | | | | | | | 0.03** | .009 | 7.537 | .006 | 1 | 1.026 |
Model χ2 | 160.962 (df = 1, p<.001) | 53.787 (df = 2, p<.001) |
Nagelkerke R2 | .258 | .145(ΔR2 = -.113) |
분류정확도 | 78.4% | 91.7% |
기본 | PARE | 0.11*** | .010 | 122.69 | <.001 | 1 | 1.118 | 0.10*** | .010 | 92.09 | <.001 | 1 | 1.106 |
K-PAT | | | | | | | 0.05*** | .007 | 40.62 | <.001 | 1 | 1.046 |
Model χ2 | 45.988 (df = 1, p<.001) | 206.064 (df = 2, p<.001) |
Nagelkerke R2 | .125 | .322(ΔR2 = .197) |
분류정확도 | 91.4% | 80.7% |
고등 | PARE | 0.03 | .031 | 0.78 | .378 | 1 | 1.027 | 0.03 | .032 | 0.73 | .394 | 1 | 1.028 |
K-PAT | | | | | | | 0.08*** | .021 | 15.4 | <.001 | 1 | 1.084 |
Model χ2 | .764 (df = 1, p = .382) | 17.541 (df = 2, p<.001) |
Nagelkerke R2 | .005 | .120(ΔR2 = .115) |
분류정확도 | 96.0% | 96.0% |
주: p<.05,
p<.01,
p<.001.