Table 9. Hierarchical logistic regression analyses: Predicting pass rates for screen, basic and advanced courses based on K-PAT total score & PARE score

과정 요인 1단계 2단계
B SE Wald p df OR B SE Wald p df OR
입문 PARE 0.09*** .014 44.48 <.001 1 1.095 0.08*** .014 32.22 <.001 1 1.083
K-PAT 0.03** .009 7.537 .006 1 1.026
Model χ2 160.962 (df = 1, p<.001) 53.787 (df = 2, p<.001)
Nagelkerke R2 .258 .145(ΔR2 = -.113)
분류정확도 78.4% 91.7%
기본 PARE 0.11*** .010 122.69 <.001 1 1.118 0.10*** .010 92.09 <.001 1 1.106
K-PAT 0.05*** .007 40.62 <.001 1 1.046
Model χ2 45.988 (df = 1, p<.001) 206.064 (df = 2, p<.001)
Nagelkerke R2 .125 .322(ΔR2 = .197)
분류정확도 91.4% 80.7%
고등 PARE 0.03 .031 0.78 .378 1 1.027 0.03 .032 0.73 .394 1 1.028
K-PAT 0.08*** .021 15.4 <.001 1 1.084
Model χ2 .764 (df = 1, p = .382) 17.541 (df = 2, p<.001)
Nagelkerke R2 .005 .120(ΔR2 = .115)
분류정확도 96.0% 96.0%
주: p<.05,
p<.01,
p<.001.