Table 7. Logistic regression analyses: Predicting pass rates for basic course based on K-PAT subtest scores

B SE Wald p df OR OR 95% 신뢰구간
하한 상한
인지영역 →기본 과정 수료
도형회전 0.031 .100 0.096 .756 1 1.032 0.848 1.255
도형전개도 0.226* .102 4.911 .027 1 1.253 1.026 1.530
척도판독 0.095 .099 0.922 .337 1 1.100 0.906 1.335
계기판독 0.375*** .105 12.639 <.001 1 1.455 1.183 1.789
배관미로 -0.362*** .096 14.165 <.001 1 0.696 0.577 0.841
기계원리 0.133 .101 1.727 .189 1 1.143 0.937 1.394
의사결정 0.021 .095 0.049 .825 1 1.021 0.847 1.231
시각변별 0.043 .091 0.224 .636 1 1.044 0.873 1.249
기억 -0.172 .123 1.957 .162 1 0.842 0.662 1.071
정보처리영역
수표해독 0.124 .077 2.569 .109 1 1.132 0.973 1.318
속도추정 -0.242* .117 4.294 .038 1 0.785 0.624 0.987
추적/회피 -0.462*** .139 11.017 <.001 1 0.630 0.479 0.827
멀티태스킹(이동) 0.061 .097 0.395 .530 1 1.063 0.879 1.285
멀티태스킹(기억) 0.254** .089 8.172 .004 1 1.289 1.083 1.535
멀티태스킹(청각) 0.242** .085 8.076 .004 1 1.273 1.078 1.504
χ2(15) = 112.733 (p<.001), Nagelkerke R2 = .186, 분류정확도 = 73.9%
주: p<.05,
p<.01,
p<.001.