Table 11. Hierarchical logistic regression analyses: Predicting pass rates for basic courses based on K-PAT subset score & PARE score

요인 하위검사 1단계 2단계
B SE Wald p df OR B SE Wald p df OR
PARE PARE 0.11*** .01 122.69 <.001 1 1.118 0.11*** .01 96.48 <.001 1 1.112
K-PAT 인지영역
도형회전 0.08 .11 0.48 .487 1 1.079
도형전개도 0.26* .11 5.28 .022 1 1.291
척도판독 0.04 .11 0.14 .710 1 1.042
계기판독 0.34** .11 8.97 .003 1 1.406
배관미로 -0.35** .11 10.68 .001 1 0.705
기계원리 0.1 .11 0.81 .370 1 1.104
의사결정 -0.1 .11 0.88 .348 1 0.906
시각변별 0.05 .1 0.24 .625 1 1.050
기억 -0.25 .14 3.28 .070 1 0.782
정보처리영역
수표해독 0.09 .09 1.1 .295 1 1.096
속도추정 -0.21 .14 2.53 .112 1 0.807
추적/회피 -0.41** .16 7.12 .008 1 0.662
멀티태스킹(이동) 0.04 .11 0.17 .680 1 1.045
멀티태스킹(기억) 0.18 .1 3.39 .066 1 1.199
멀티태스킹(청각) 0.29** .1 9.06 .003 1 1.333
Model χ2 160.962 (df = 1, p<.001) 235.592 (df = 16, p<.001)
Nagelkerke R2(Δ) .258 .361(.103)
분류정확도 78.4% 81.0%
주: p<.05,
p<.01,
p<.001.